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This paper reports the development of practical methods of viscometry to 
characterize non-Newtonian fluids in slow flow. It is shown that measurements 
of the free surface near rods rotating in STP and polyacrylamide are accurate, 
reproducible, and in excellent agreement with a theory of rod climbing. Results 
are presented that establish the theory and experiment as a viscometer for 
determining the values of certain (Rivlin-Ericksen) constants that arise in the 
theory of slow flow. The variation of these constants with temperature in our 
sample of STP has been explicitly and accurately determined. The experiments 
in STP show that there is a range of rotational speeds for which STP may be 
well described by the fluids of grade four. Depth-averaged equations are derived 
from the equations governing steady axisymmetric flow of any incompressible 
simple fluid. From the depth-averaged equations, *we prove a theorem about 
the variation of the torque required to turn the rod. 

1. Introduction 
There is a need in rheology for the development of classes of viscometers that 

allow investigators to predict the response in slow flow of any rheologically 
complex fluid whose stress can be expanded into a series of Rivlin-Ericksen 
tensors. The prediction of the response of this type of fluid requires the deter- 
mination of the values of certain constants that appear in the coefficients of the 
expansion (the Rivlin-Ericksen constants). The excellent agreement between 
theory and experiment demonstrated in this paper and in earlier work indicates 
that free-surface viscometers, like the rotating rod viscometer, can be used to 
determine reliable and reproducible values of some of the constants. 

In  this paper we continue the work of Joseph & Fosdick (1973) and Joseph, 
Beaves & Fosdick (1973), in which a theory was developed for the Weissenberg 
effect, and associated experimental data (Joseph et al. 1973) were reported. 
The work described in the above and present papers represents the first stage 
in a broad programme, aimed at  the development of free-surface viscometers. 

The Weissenberg eSfect refers to the rise of the free surface in the neighbourhood 
of a rod rotating in certain non-Newtonian fluids. The rise of the free surface in 
non-Newtonian fluids is striking, because the free surface sinks when the same 
rod rotates in Newtonian fluids. Figures 1 (a) ,  (b )  (plate 1) show a rod of 0-476 ern 
radius rotating at 10 rev s-l in (a) a Newtonian oil and (b )  STP. The free surface 
rises in STP, but only when the rod radius is below a critical value which depends 
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exclusively on the material parameters. When the radius is larger than the 
critical value, then, according to the theory of Joseph et al. (1973), the STP 
will not climp up the rotating rod, as illustrated in figure 1 (c ) .  

The theory of rod climbing, given in Joseph & Fosdick (1973) and Joseph et 
al. (1973), applies to any rheologically complex fluid whose stress response can be 
developed around the rest state into a series of stress tensors involving the 
Rivlin-Ericksen kinematic tensors. The theory gives the shape of the free surface 
and the motion as a power series in the angular velocity of the rod. In  Joseph 
et al. (1973) we achieved good agreement between theory and experiments with 
STP (a polyisobutylene solution in a petroleum oil base). The comparison be- 
tween theory and experiments given in Joseph et al. (1 973) was ambiguous on 
several points, and left open the question of what agreement could be expected 
in experiments with fluids other than STP. We call an agreement good when, 
under all reasonable experimental operating conditions, the comparison of 
theory and experiment yields unique values for (Rivlin-Ericksen) parameters 
which in the theory are presumed to be constant a t  a fixed value of the tempera- 
ture. In  the lowest-order theory, considered in Joseph et al. (1973) and here, 
there is only one constant to determine, the climbing constant B = 3a,+2a2. 
In  Joseph et al. (1973) and here we use two methods for measuring p. We call 
these the method of slopes and the method of proJile Jitting. The methods are 
described in 3 6. 

Joseph et al. (1973) achieved good agreement between the'ory and experiment 
using both the method of slopes and the method of profile fitting for several 
rod radii. But there were apparent discrepancies of the order of 20% in the 
values obtained for B with the various rods. These discrepancies appeared to 
correlate with rod radius, and were much greater than could be attributed to 
experimental error. Joseph et al. (1973) conjectured that the discrepancy might 
be due to unknown variations in the operating temperature. The experiments 
reported in this paper, on the variation of p with temperature, strongly support 
this conjecture. 

In  the experiments reported here, we studied the temperature dependence of 
,/? for one sample of STP; we found that 

B= 20exp( -0.115T) (25 "C Q T Q 50 "C). (1.1) 

We believe that this is probably the first reliable graph of the temperature de- 
pendence of a Rivlin-Ericksen constant, other than the viscosity; and it shows 
that the value of Pis  very sensitive to changes in the temperature. For example, 
the 20 "/o discrepaacy in /? noted in Joseph et al. (1973) can be explained by a 
change of teqperature of only 2 "C. Temperature changes of more than 2 "C 
from day to day are common in our laboratory. 

The theory and experiment of Joseph et al. (1973) were imperfectly matched. 
The theory presumed that the free surface of the fluid (STP) was perpendicular 
to the rod surface; the experiments had quite large wetting angles. To correct 
for the static rise due to wetting, we added, to the rise computed from theory, a 
rise due to wetting computed from the surface-tension equation, with the value 
of the prescribed contact angle taken from experiments. In  the new experiments 
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we were able to achieve the flat contact assumed in the theory, by coating the 
rod with ‘Scotchgard’.? 

To test the theory on a second fluid, we studied the climb near rods which 
rotate in polyacrylamide solutions. As in STP, the rise is linear in the square 
of the angular velocity over an interval which is sufficiently large to make easy 
the comparison of results from second-order theory with experiment. We regard 
the presence of large regions of linearity in the height rise curves as a stroke of 
good luck. The curvature of the height rise curve at the origin could be appre- 
ciable; in fact, the absence of measurable curvature near the origin, which 
holds for STP a t  all temperatures in the range investigated and for polyacryl- 
amide near room temperatures, does not hold for polyacrylamide at elevated 
temperatures. 

We are continuing this study of the rotating rod viscometer by inclusion of 
the higher-order theory, which gives the curvature of the rise curve at the origin. 
The higher-order theory is needed for materials that do not have a nearly linear 
rise curve a t  the origin. For ‘good’ materials with linear rise curves, like STP, 
the higher-order theory should lead to the determination of values of the higher- 
order Rivlin-Ericksen constants, which have never been measured. The results 
of experiments reported here indicate that it might be possible to determine 
higher-order Rivlin-Ericksen constants for STP (see figure 17).  

The analysis presented in this paper includes a derivation of depth-averaged 
equations. These arise when the governing equations for steady axisymmetric 
motions of a simple fluid, in general form, are averaged with respect to depth. 
The resulting equations are exact statements, without approximations, in 
integral form, of the conservation of momentum on cylinders drawn in the fluid 
around the rod. They have some promise for approximate and Galerkin analysis. 
From one of these equations, we derive an interesting theorem about the 
variation of the torque required to turn the rod. 

2. Viscometry for simple fluids 
Newcomers to the study of the fluid dynamics of rheologically complex 

fluids are surprised that it is necessary to maintain a distinction between con- 
stitutive relations that apply to one and the same fluid undergoing different 
types of motion. The stresses in a rheologically complex fluid depend on the 
history of the deformation, and may take on entirely different forms when the 
histories are different. One and the same material may actually appear to 
satisfy different constitutive equations when undergoing different types of 
motion. 

One ma%hematical theory, general enough to characterize the stress response 
of a single fluid in different types of flow, has been given by No11 (1958). In  Noll’s 
theory (see Truesdell & No11 1965), the rheologically complex fluid is called 
simple, and its stress is determined by the history of the deformation gradient 

t ‘Scotchgard’ is a brand name for a commercial waterproofing agent, mainly used on 
fabrics, It is manufactured by the 3-M Company. We are indebted to L. E. Scriven for 
suggesting that we coat the rods with Scotchgard. 
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For flows in which the density p of the fluid is constant, the stress T is equal to an 
isotropic part, the 'pressure' -pl, plus the extra stress: 

S = .F[VgTVg - 11 = T +p1. 

= x t (x ,  7) is the position at  time r < t of a particle which a t  the present time 
t is a t  the point g = x. 

The problem of viscometry for simple fluids, generally stated, is to find the 
form of the operator 9 for a given fluid. This is an extremely hard problem, 
and its solution is unknown, except for the tremendously important case of a 
Navier-S tokes fluid. 

To circumvent the difficulty of doing practical fluid mechanics with a general 
but unknown 9, it  is useful to define restricted problems of viscometry. These 
take form by first specifying classes of motion or histories on which 9 reduces 
to something more manageable, then defining viscometry relative to the more 
manageable 9. For example, on small-amplitude motions of arbitrary frequency, 
.F reduces to the constitutive equation of linear viscoelasticity. Here the fluid is 
completely characterized by a shear relaxation modulus (Coleman & No11 1961; 
Markovitz & Coleman 1964). The goal of viscometry for simple fluids in small- 
amplitude motions of arbitrary frequency is to find the form of the shear relaxa- 
tion modulus. 

A different problem of viscometry is associated with viscometric flows. Such 
flows are locally equivalent to pure shearing as in Couett6 flow or Poiseuille 
flow. For viscometric flows 9 reduces to three scalar functions of the rate of 
shearing (see Coleman, Markovitz & No11 1966). Nearly all of the existing visco- 
meters are based on viscometric flow theory and lead to graphs of the three 
scalar functions. The response 9 for some single fluid in all viscometric flows 
is known when the three scalar functions are known; but: knowing the three 
functions does not suffice to describe 9 in motions more general than visco- 
metric. It is, therefore, possible in principle to predict the response of a simple 
fluid in Couette flow from experiments, say, on Poiseuille flow but these experi- 
ments would not suffice to describe flow around a sphere, or between rotating 
spheres, or in a Couette apparatus with ends. 

Yet another problem of viscometry is associated with a class of simple fluids 
in smooth slow steady motions. We call U(x, E )  = EU(X,E) a smooth steady 
motion if u(x, 0) and all of its spatial derivatives are continuous and uniformly 
bounded in the closure of the domain on which they are defined. Assuming that 
9- is expandable? on steady histories such that U = w(x), 9 may be expanded 
into a Taylor series, whose partial sum is 

t Coleman & No11 (i960) were the first to write down these expansions; they also gave 
sufficient (but not necessary) conditions for convergence. Their expansion uses a retard- 
ation parameter 01 which leads to a slow time at. Their forms for the s, reduce to  the ones 
used here when time derivatives are set to zero. For steady flows, the correct forms of the 
expansions also follow from setting U = eu in the stress tensors for the Rivlin-Ericksen 
fluids (Giesekus 1961 ; Langlois & Rivlin 1963). 
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A, = @a, ; the A, are Rivlin-Ericksen kinematic tensors defined by 

and 

The first four of the tensors S, are 

%[All = PA,, 

S,[Al, A21 = a, A2 + a 2  A!, 

% [ A I , A z , ~ ~ I  = P1A3+P2(A2Al+AiA2) +P3(trA2) 

S,[Ai, Az,A~,API = YiA,+~z(A3AlfA1A3)fy3A~ 

+ Y4(A,A!+&A2) +YdtrA2)A2+?6(trA2) A? 

+ C Y ~  t r  A3 + ya(tr A1 A2)l Ai. (2.2) 

The coefficients p, a,, a2, I,, PZ, P3, yl, yz, . . . ,ya are (Rivlin-Ericksen) constants, 
or, more generally, functions of the temperature.? 

The Rivlin-Ericksen kinematic tensors and the tensors S, are homogeneous 
and of degree n in the derivatives of U. In  perturbation studies, i t  is convenient 
to  call attention to the fact that the S, are homogeneous polynomials in U. 
For this reason, we define the tensor-valued function 

- 
S,[U, U, . . ., U] S,[A,, Afi-1, .. ., -411 = cnS,[an, a,-,, . . . , all 

- 
= EnS,[u,U, ..., u]. 

n times 

The stress tensors S(N)  for the fluids of grade N are determined when the Rivlin- 
Ericksen constants are known. The problem of viscometry for fluids of grade N 
is to find the value of the constants. 

To summarize: the general problem of viscometry is to find the form of the 
stress response 9. This nearly intractable problem may be simplified by con- 
sidering restricted problems of viscometry. We are interested in the restricted 
problem of viscometry associated with slow motions. We want to find the con- 
stants for the tensors S ( N ) .  

3. Mechanical-response viscometers and free-surface viscometers 
We are advocating the use of free-surface viscometers for the viscometry of 

the fluids of grade N .  To understand free-surface viscometry better, it  is useful 
to make comparisons with mechanical-response viscometry . 

All of the viscometers based on viscometric flow theory are mechanical- 
response viscometers. The Couette viscometer is one example of a viscometric 

t A complete discussion of all matters relating t o  (2.2) is given by Truesdell & No11 
(1965, p. 494) and Truesdell (1974, p. 132). 
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mechanical-response viscometer.? The Couette viscometer gives values of the 
torque and, say, the normal thrust on the cylinder walls for given values of 
the angular velocity. Comparison of the experimental values with theoretical 
expressions based on viscometric flow theory can, in principle, yield the values 
of the three viscometric functions. 

We have noted that viscometry based on the theory of viscometric flows has 
only a limited potential; given the three viscometric functions the response of 
the fluid is determined in all other viscometric flows, but not in more general 
flows.$ In  particular, complete knowledge of the viscometric functions will not 
determine the response of the fluid in most slow motions. Some, but not all, of 
the Rivlin-Ericksen constants, needed to determine the response of the fluid 
in slow flow, are defined by derivatives of the viscometric functions evaluated 
when the shear rate K = 0. In  principle, one could obtain some Rivlin-Ericksen 
constants by finding the values of the derivatives at K = 0; in practice, this is 
difficult, because mechanical-response viscometers are inaccurate at  low rates 
of shearing. It is unlikely that higher derivatives of the viscometric functions 
at K = 0 could be computed by extrapolating experimental results for K = 0. 

Mechanical-response viscometers need not be restricted to viscometric flows. 
Such viscometers can be constructed to model any solution of the flow equations; 
in particular, the mechanical flow response of any slow flow that may be con- 
structed as a perturbation from a state of rest may be used as a basis for a 
mechanical-response viscometer. Perturbation solixtions pivoted around the 
rest state are naturally expressed in terms of the parameters of the Rivlin- 
Ericksen fluids. Mechanical-response viscometers may eventually be important 
for the viscometry of the fluids of grade N .  The principal practical difficulty of 
mechanical-response viscometry for the fluids of grade N is that it  is hard to get 
accurate results a t  low rates of shearing. This difficblty is particularly noxious, 
because the Rivlin-Ericksen constants are defined relative to the limit ( K  -+ 0) 
of zero shear. This practical problem of mechanical-response viscometry is, to 
a degree, avoided in free-surface viscometers. 

A free-surface viscometer uses the shape of the free sukface as a barometer 
for measuring the distribution of stresses at  the surface. The free surface is very 
sensitive to changes in the forces a t  the surface and these types of viscometers 
have a demonstrated capacity to operate at  low rates of shearing (Tanner 1970; 
Joseph et al. 1973). 

The notion of a free-surface viscometer seems to have been first suggested by 
Wineman (see Pipkin & Tanner 1973). Wineman & Pipkin (1 966) gave a pertur- 
bation theory for the problem of slow flow through a channel with vertical side 
walls containing fluid with a free surface on top. The bottom of the trough is 
tilted at an angle a from the horizontal. The free surface will bulge out, because 

t A Couette viscometer is a mechanical device which models Couette flow - the flow 
induced by shearing the fluid between two infinitely long concentric cylinders rotating 
a t  different speeds. The flow in a Couette viscometer is a viscometric flow only if end effects 
in the apparatus are neglected. 

3 Despite efforts for over a decade, mechanical-response viscometry for viscometric 
flow has not led to  a reliable determination of all three viscometric functions for a single 
non-Newtonian fluid (see Pritchard 1971; Pipkin & Tanner 1973). 
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it is pushed out by normal stresses associated with the shearing flow in the 
trough. The analysis is carried up to terms of order two in sin a. Surface tension 
is neglected. Tanner’s (i970) experiments show good agreement between the 
height of the bulge and the angle. 

A second kind of free-surface viscometer is associated with the Weissenberg 
effect. This effect describes the fact that, whereas the free surface near a rod 
rotating in a Newtonian fluid will fall, the free surface on, say, polymer solutions 
or whipping creams will rise. Joseph & Fosdick (1973) have given a perturbation 
theory of rod climbing, in which the climb depends on the Rivlin-Ericksen 
constants. By measuring the climb, Joseph et al. (1973) were able to determine 
the value of the combination of Rivlin-Ericksen constants (the climbing con- 
stant ,@ that appears at lowest order in the perturbation expansion. Our present 
effort is one further step in the direction of establishing the rod-climbing theory 
and experiment as a ‘rotating-rod viscometer ’. 

4. Mathematical formulation and the perturbation series 
An infinitely long rod of radius a rotates with a steady angular velocity Q in 

a vat of liquid under a free surface z = h(r ;  Q). It is assumed that the air above 
the free surface cannot exert tangential tractions, and that the difference 
between the normal stress on the liquid side and the air pressure on the air side 
of the free surface is balanced by surface tension. The governing equations, 
written in cylindrical co-ordinates (r,  0 ,  z )  for axially symmetric velocity com- 
ponents [u(r, z ) ,  v(r, z ) ,  w(r,  z ) ]  and without prior specification of the extra stress, 
are as follows: in Vn 

u = e,v+v, v = e,u+e,w, -+- = V, . rv  = 0, ( 4 . 1 ~ )  
a?% arw 
ar az 

and 

(4.i b )  

( 4 . 1 ~ )  

( 4 . 1 d )  

Q = p +pgz is the head; and 
V, = e,a,+e,a,. 

At r = a, u = aae,. (4.i e) 

On the free surface z = h ( r ;  a), we must satisfy the following conditions. The 
normal component of velocity must vanish: 

w - h‘u = 0 (h’ = dh/dr).  (4.l.f) 

(4.1 9 )  

The azimuthal and radial components of the shear stress must vanish: 

s,, - h’S,, = 0 

and 
31 

h’(AS’,, - AS’,) + (1 - h‘,) AS’,, = 0. (4.1h) 
F L M  69 
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The jump in the normal stress is balanced by the surface-tension force with 
surface tension T :  

pa  - 0 + S,, - h’S,, = (T/r) [rh‘/( 1 + h’”$]’ - pgh. ( 4 . l i )  

pu is the air pressure. A contact angle $, is prescribed a t  r = a :  

h’(a; Q) = cot c$~. (4.1J.1 

To complete the specification of the problem, we must properly pose condi- 
tions to be satisfied by solutions as T + O O  and IzI -+a. We shall require that all 
functions appearing in (4.1 a-e) become independent of z as - z -+ co. Far below 
the free surface, the flow is viscometric (we call it viscometric Couette flow) and 
it satisfies (5.1 a-e) and (5.2 a-c). As r --f co, the solution must approach the hydro- 
static solution under a flat free surface 

h(r;Q)+O, u( r , z ;Q) -+O,  @ - + O  as r+m. ( 4 . l k )  

A closer specification of the asymptotic behaviour of solutions can be deduced 
by linearizing the problem around the asymptotic limit specified in (4 . lk ) .  
This linearization is governed by the problem (5.11). 

For very large values of -2, we shall require that the solution be fully 
developed, with a hydrostatic variation of pressure and a purely azimuthal 
velocity field depending only on r .  This flow is defhed more carefully in $ 5  
when we consider the depth-averaged equations. 

Free-surface problems like the one just described can be treated by a pertur- 
bation method in which the domain Va occupied by liquid and the flow both 
change with a. As in Joseph & Fosdick (1973), we first define a reference con- 
figuration as the domain V, occupied by the fluid when Q =+O. We then define 
a mapping CY;, t-t Va, 

(4.2a) T = YO, z = #(TO,  20; Q), - 00 < z < h(r; Q ) ,  

which is even in Q, and analytic in Q, with 

$Po, 2,; 0) = zo, - co < zo < ho(r), (4.2b) 

which carries boundary points into boundary points: 

$ w o ,  h,; Ql = h(r;  Q). ( 4 . 2 ~ )  

We expand the solution as a power series in the reference domain Yo, 

The square bracket superscripts denote a substantial derivative following the 
mapping (4.2a) 

U[nl(ro, 2,) = - - 
n! dQn (4.4) 

These derivatives take account of the fact that the co-ordinate z depends on Q. 
We also make heavy use of partial derivatives holding z fixed: 
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Since h(r; Q) does not depend on z, h("); = hmnJ. The substantial derivatives and 
partial derivatives are connected by the chain rule 

UIll = u(1) + $(I) a,U(o), 

u[21 = UP) + $(1) azu<l> + & ( $ W ) 2  a;,uco> + $ ( 2 )  a,u(o>, 
etc. 

The next task is to form the boundary-value problems for the substantial de- 
rivatives. One simplification is that (4.1 a-e) are identities in z, and they continue 
to hold when differentiated partially with respect to a. We may therefore write 
the perturbation field equations at nth order as 

V.u(n) = 0,  (4.6~) 

p(u.  Vu)W = - VWn) +pV2u(n) + c v. sp (4.6b) 

in K ,  and u(l) = e,a, u ( n )  = 0 (n $: 1 )  (4.6~) 

at r = a. The tensors S a  are defined in the following way. We first expand 
u(r,  z ;  Q) to find 

1 + q = l  +n 
Z+n 

Cz is a summation over all integers ri 2 1 such that 

n 

i = l  
I = x ( r $ - n ) + l .  

It follows that s =  2 c tq) 
n=l  q+Z=l+n 

(4.6d) 

(4.6e) 

on steady histories that are analytic in Q. 
To complete the specification of the perturbation problems, we must perturb 

the boundary conditions. The conditions are of the form F(r ,  z ;  Q) = 0 with 
z = h(r; a). Unlike the field equations, the boundary equations are not identities 
in z and, in general, BYn) =!= 0. Since Y(r,h(r;  Q); Q) = 0 identically in Q, it 
follows that 

for each of the boundary equations (4.1 f-i) .  It should be noted that the interior 
values of the mapping function $ do not enter into the perturbation problems 
generated by (4.6); only the boundary values h ( 4  of the mapping are required, 
and tEese are determined sequentially as a part of the solution. Given h(r; Q), 
we may define $ by the shifting transformation 

r, = r ,  z = $ = zo + [h(r; Q) - h(r; O ) ] .  (4.7) 

The problems (4.6) determine the rise coefficients h('+(r0) and the velocity 
coefficients u(n)(ro, zo) as partial derivatives of the solution evaluated in the 
reference domain Yo. Given the mapping function (4.7), we may obtain the 

31-2 
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substantial derivatives u[nl(ro, zo) once the velocity coefficients u(n) are known; 
e.g. 

u[11 = u(l) + h(l) asdo) for - co < zo 6 0, 

etc. Given the substantial derivatives in Yo we evaluate the solution in the 
deformed domain Va by inverting the shifting transformation (4.7) : 

u(r ,  z ;  Q) = x U [ ~ ] ( V ~ ,  zo) Qn = C. u [ n l ( r ,  x - h(r; Q)) fin. (4.8) 
n=O n=O 

In  this way it is possible to construct the perturbation solution on the domain 
Yo of physical interest, while computing in the reference domain % chosen for 
mathematical convenience.t 

In  the rod-climbing problem, the most convenient of the reference domains 
is the one for which h(r; 0) = 0. It is possible to use this convenient flat reference 
domain only if h = 0 is a solution of the problem (4.1) when Q = 0. This solution 
is in fact unique, if the angle between the rod and the fluid is 90" (neutral wetting, 

= in). Joseph et al. (1973) assumed neutral wetting, but neutral wetting did 
not hold in the experiments. They added a static contribution hs(r) to the h 
computed with h'(u) = 0; the static contribution was computed from the non- 
linear surface-tension equation, using the values of the contact angle observed in 
the experiments. They gave some theoretical arguments and some experimental 
evidence to support this adding in of the static contribution. We shall examine 
this question in a more definitive way in this paper; by coating the rods we 
were able to get h'(u) = 0 in the experiments. 

Adopting h'(u) = 0, we find, as in Joseph & Fosdick (1973), that 

~ ( 9  = S(O> = h(O> h ( y ;  0) = 0 and $(O) = 0. 

The reference domain is now 

Yo = [ro,zo I u < ro < 00, -00 < zo < 01. 

As anotational convenience, we shall denote the variables (r,,, zo) as ( r ,  z )  wherever 
the context makes the intent clear. At first order, we find that 

- V W )  +,uV2u(1) = 0, V .  u(1) = 0 in Yo, 
u(l) = ueg at r = a, (4.9) I w(1> = 8;;) = 8;:) = 0 on z = 0, 

t The relation of Stokes' Eulerian theory of domain perturbations to the Lagrangian 
theory of Joseph, just described, is discussed in Joseph (1973) and in Joseph & Sturges 
(1975). To our knowledge, Stokes' theory does not deal with the problem of expressing 
the solution in the perturbed domain. The logical difficulties with Stokes' theory can be 
explained by a cbntinuation argument resting on the identity (Joseph 1973, (6.2)) 

c U[nl(ro, zo) = c. u ( n > ( r ,  z(z,; a)) an. 
n=O n=O 

The u("> are functions determined by the perturbation problem in extended, by 
declaration, onto ( -  00 < z 6 h(r;  a)). Of course, dn)(r, h) + u(")(T, 0) and the ex- 
tended functions do not agree with the restricted functions on the boundary. Equation 
(4.8) is a better way to express the solution in Va, because each term of (4.8) satisfies a 
nice boundary condition and no arguments about analytic continuations are required. 
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with decay conditions for larger values of - z and r .  We find that 

u(1) = ega2 / r ,  @W = 0. 

485 

(4.10) 

The free-surface equation is 

Hence h(l) = 0. At second order, 

(4.12) 1 
du<s'> u<l> 2 

= [ (2a1+a , )e , e ,+a  e e ' "I( dr :)  

and (4.14) 

To obtain the boundary conditions at x = 0, we note that, since h(l) = 0 and 
a $ O )  = 0,  where f stands for any of the variables of the rest state, 

and Sp) is given by (4.13).  
We note next that 

is a gradient, and may be equilibrated by a pressure (without motion d2) = d2)  
= w(2) = 0) 

(4.15) 
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/? = 3a, + 2a2 is the climbing constant. The coefficient h(2)(r), which gives the 
first deviation of the free surface from flatness, is determined from the problem 

h(2Y(a) = 0, h(2)(r)-+O as r-tco. (4.16b) 

The properties of were thoroughly discussed in Joseph et al. (1973). For 
completeness, we shall summarize that discussion here. 

is small and wherever M 2 ) ( r )  > 0. 
To see this, it  is convenient to set T = 0. Then the free surface will rise if and 
only if /? > 0 and 

r2 < 4 h . t  (4.17) 

Otherwise, inertia dominates, and the free surface sinks. Representative values 
for /? near room temperatures in our experiments are ,8 NN 1 (STP) and ,8 NN 0.8 
and 1.4 (polyacrylamide). It is easy to verify that the ratio 

The fluid will climb the rod whenever 

IT(rh(2)’)’/pgrh(2>I 3 16T/pgr2 

as r-+O when is given ( 4 . 1 6 ~ )  with T = 0. This ratio shows that when r is 
small surface tension should not be neglected. To determine the way in which 
the parameters a, P, p, g ,  T affect hW, Joseph et al. (1973) derived an accurate 
approximation to the problem (4.16a, b) .  In  the approximation, we write 
( 4 . 1 6 ~ )  as 

Tr(rM2)’)’ -pga2h(2) = - a 2 @ ( 2 )  + ( r  - a2/r) T(rh(2)’)’. (4.18) 

The last term of (4.18) is zero when r = a. We set this term to zero, and solve the 
remaining problem; then we restore the neglected term through successive 
approximations. The first approximation is very accurate, especially near the 
rod r = a (see Joseph et al. 1973): 

(4.19) 

A2 = a2S and S = pg/T. This expression shows that, when a is small, 
proportional to a and p, and is inversely proportional to T*. 

is 

t The first theoretical analyses of rod climbing are due to Serrin (1959) and Giesekus 
(1961). Serrin studied the problem for a Reiner-Rivlin fluid with constant coefficients 
(for this mathematical fluid, /? = 2 4 ,  on the assumption that the free surface was 
nearly flat and that the z dependence of the solution and the secondary motions could be 
neglected. SurEace tension was neglected. He interpreted a negative slope a t  r = a as a 
tendency to climb and a negative slope at r = b as a tendency to fall. This criterion is 
not well huited to problems involving surface tension. Serrin found that, in the case 
b S a, the fluid has a tendency to climb (in his sense) if a < 2(2a,/p)o)t This result is 
consistent with and implied by (4.17), which Joseph et al. (1973) deduced by setting 
T = 0. Giesekus (1961), independently, studied rod climbing of a second-order fluid by 
the same approximate method used by Serrin. But Giesekus neglected inertia and did 
not deduce a critical radius. Fosdick & Serrin (1974, private communication) have shown 
that the critical radius 2(/?/p)* continues to have significance when rod climbing is assumed 
to be governed by an  equation which is like (4.16a), except that the nonlinear surface- 
tension term is retained and arbitrarily prescribed contact angles are allowed. 
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Returning now to general remarks about the perturbation solution, we note 
that an unexpected feature of the solution is that no secondary motions are 
generated a t  second order. This makes it possible to find the first correction for 
the shape of the free surface, without solving the difficult fourth-order problem 
governing the motion. The condition that V ( a )  = 0 is absolutely essential in this 
mathematical result; without it, the reference domain would not be flat and, 
as we shall explain, secondary motion would be generated by an unequilibrated 
shear stress on the free surface. Actual secondary motions induced in this way 
may be very weak. 

We shall not pursue the perturbation analysis further; the analysis up to 
order four is given in Joseph & Fosdick (1973)) and only a very small part of 
the higher-order theory is needed to achieve the aims of this paper. It is necessary, 
however, to display the ordering of the formal solution in powers of Q, and it is 
helpful to explain this ordering in physical terms. 

The head (Q = p +pgz), the pressure p ,  the free surface, and secondary 
motion should not change when the rod is rotated the other way; therefore, the 
power series solution will be in even powers of Q. The azimuthal component of 
velocity, and the associated stress should change sign with Q. It follows that 

q r ;  Q) = m ( r )  Q ~ + o ( Q ~ ) ,  

~ ( r ,  z ;  n) = f p g z  = ~ ( 2 ) ~ 2 +  o(Q*), - 
~ ( r ,  z ;  Q) = ee[t#) Q + 0 ( ~ 3 ) ]  + v x [e,($(4)(r, z )  Q4+ O(Q6))I. 

The velocity field u has been split into an azimuthal component and a secondary 
motion, which is given by derivatives of a stream function $(r, z ;  Q). 

There is a neat sorting of the different characteristic physical effects into an 
association with the different powers of Q in the series solution. When there is 
no rotation, the free surface is flat and the pressure is hydrostatic. At first order 
in Q, there is a z-independent flow in circles with no change in the pressure or 
flat free surface. At order two, the pressure must equilibrate the central forces 
arising from centripetal accelerations and normal stress. The free surface acts 
as the barometer of the interior pressure distribution, rising where the interior 
pressure is greatest. The free surface can remain flat only if there is no motion. 
The departure from flatness of the free surface at order two requires that the 
azimuthal velocity, at order three, should come to depend on z. This is a con 
sequence of the fact that the azimuthal component of the shear stress 

which vanishes automatically for z-independent fields when the free surface is 
flat, can vanish when the free surface is not flat only when S,, = h'S,, does not 
vanish. The z dependence of the azimuthal field at  third order is generated without 
changing the pressure or the shape of the free surface. The z-dependent azimuthal 
field, generated at order three, is associated at  order four with forces that also 
depend on z ;  such forces inevitably exert torques in an azimuthal plane, and 
they lead to secondary motions. 

This ends our discussion of the perturbation theory. A more complete deriva- 
tion of the theory including higher orders (through Q4), and some solutions can 
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be found in Joseph & Fosdick (1973). The evaluation of the higher-order theory 
a t  order 04, where the secondary motions first appear, is important; our experi- 
ments show very little deviation from what might be expected of a fourth-order 
theory (see figure 17). 

In  the next section we shall reformulate the problem of rod climbing without 
perturbations. 

5. The depth-averaged difference equations and the invariance of the 
torque 

Difference equations may be formed by subtracting from the basic equations 
(4.1) the equations ((5.1) below) which govern the viscometric flow that prevails 
far below the free surface. Vertical averaging converts the partial differential 
equations into a formally much simpler set of ordinary, integral-differential 
equations. Much of the simplicity of form achieved in depth averaging arises 
from the way that conditions at  the free boundary are put into the equations. 

Consider the viscometric Couette flow, designated with a tilde overbar, to 
which solutions of (4.1) tend far below the free surface. The equations that 

( 5 . 1 ~ )  
govern this flow are 

I 
- * 

. i i = G = S  = s  = o ,  
28 zz 

(5.1 b )  

( 5 . 1 ~ )  

( 5 . l d ,  e )  
(r2Rro)f = 0, I 

G(a) = e8a0,  C ( r ) - t O  as r+oo. 

The stresses in a viscometric flow are 

g1(~) ,  CTJK) and K ~ ( K )  are the three scalar functions of the rate of shearing 

K = SO,, = r d ( r ) ;  

o = v/r is the angular velocity function. Equations (5.1) may be integrated: 

r2Rro(r) = azflr,(a), (5.2a) 

W) = c, +f(r) = Pa + f ( r ) ,  ( 5 . 2 b )  

where< f ( r >  = Rw(rd)+ ( 5 . 2 ~ )  

has no constant part. The constant C, = pa in (5 .2b )  is selected so that @(r,  z )  
and @(r)  will have a common limiting value on the free surface z = 0 as r+co. 
The velocity field may be determined by integrating ( 5 . 2 ~ )  subject to the no- 
slip condition. 

The difference between solutions (4.1) and (5.1) is designated with a double 
bracket : 

“-13 = ( 4 4 ) .  
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Subtracting (5.1) from (4.1), we find the following. Under z = h(r; a), 
aP(r"Sw11) - "SeeII-ra,~[@II +razSrz.  = p ( V 2 . r ~ ~ -  [[v211), (5-3a)  

(5 .3b)  1 
-a,(r2[[Sre]])+razSzs = p(V,.rvv+uv), r 

aAr8r.s) + raz(8z.z - [ [ @ , ] I )  = P V ~ .  ~ W V ,  (5 .3c )  

S,, - h'R,* - E[[S,,]I = 0, ( 5 . 3 d )  

and AS',,-h'S,.,-[[@I]-f(r) = (T/r)  [rh'/(l +h'2)4]'--pgh. ( 5 - 3 f )  

where v = e,u+e,w and v satisfies ( 4 . 1 ~ ) .  On z = h, we have (4 . l f )  and 

h'S,, - h'[[S,]] - h'#, + ( I  - h'2) S,, = 0, (5.3e) 

The depth-averaged equations, (5 .5 )  below, may be obtained from ( 5 . 3 ~ - c )  
by integration over z a t  a fixed value of r :  

( . ) = I h  --m .dz, (5.4) 

( ~ [ [ x ~ ~ I I ) ' - ( [ c s ~ ~ I I )  - r ( ~ [ ~ ~ ~ ) ' - h ' [ T [ r h ' / ( l  +h'2)'I'-~grh+rf(r) -r8-rI 

= P (r(u2) )' - P("V211) 7 (5.5 4 

(5 .5c )  

(r2<[[Sr~]l -PUV> 1' + r2h'flrO = 0, (5 .5b )  

and 

These equations will be derived later. They are, of course, equivalent to the 
original set (5.3a-c). This set is formally simpler than the equations ( 5 . 3 ~ - c )  
from which they were derived. Equations (5 .5 )  may bGuseful in global analysis 
of rod climbing using Galerkin or other approximate methods. 

Equation ( 5 . 5 ~ )  could be regarded as the rod-climbing equation. When the 
secondary motion and surface tension are both neglected, the first two terms of 
( 5 . 5 ~ )  vanish. The equation pgh =f was first studied by Serrin (1959). More 
recently, Fosdick & Serrin (1974, private communication) studied ( 5 . 5 ~ )  neg- 
lecting secondary motion, and with f = 

It is possible to deduce from (5 .5b)  a surprising theorem about the invariance 
of torque in steady axisymmetric flow. We shall first give a rough, then a precise, 
statement of this theorem. 

Consider the torque on two rods of the same diameter, rotating with angular 
velocity in separate samples of the same simple fluid. One of the rods generates 
a steady axisymrnetric flow under the free surface z = h. The other is infinitely 
long, and it generates a viscometric Couette flow of fluid filling all space. Suppose 
the rod under the free surface z = h has a sufficiently long length 1. The torque 
on a length I + h of rod in the $ow under z = h is the same as the torque on a length 
1 of rod in viscometric Couette$ow. This is the rough statement. What we actually 
prove is that 

(rSrz -prwu)' + T[rh'/( 1 + U2)*]' -pgrh + rf = 0. 

(5.6) 

where 
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is the torque on an infinitely long rod rotating under the free surface z = h, and 

pQ(a,%) = ~ n a J  f,@(a; ~ ) d z  

is the torque on the bottom half of the infinitely long rod rotating in viscometric 
Couette flow. Both torques are infinite; but, if 

ISre(a,z; a) -flr,(a; ~ ) l  = o(z-1) (5.7) 

~ Q ( Q > % ) - ~ Q ( Q , % J  

0 

--m 

as z-+ - co, then the difference 

is finite. In fact, (5.7) is probably an overly conservative estimate of the decay 
of the flow under z = h into viscometric form. The discrepancy between visco- 
metric flow and the flow under z = h stems from the free surface, and the action 
of secondary flows is probably confined to a region about the order of a rod 
diameter. More likely than (5.7) is the estimate 

(5.8) 

where k(a)  > 0 is O(a).  The estimates (5.7) or (5.8) imply that there is a value 
I(€) such that 

J l~,,(a, z ;  Q) - fTO(a; dz < 6 

1Xrs(a, 2 ;  Q) -f,&; Q)l = O(exp kz ) ,  

- 1 ( 4  

--m 

for any e > 0. This is the rod length 1 = Z(e) in our rough statement. 
To prove (5 .6) ,  we note that ( 5 . 2 ~ )  implies that 

r%!7,0(r; Q) = a2LJ',.;,(a; Q). 

Then, replacing r2flTs in the second term of (5:5b) ,  we may integrate (5 .5b)  
from a to r .  We find that 

a2([C~,,ll)I,=,-r""~,sll -PUV) +a2fr,,(a; a) [ h b ;  Q) -h(r; Q)] = 0. (5.9) 

Since h+O as ~ + c o ,  the second term of (5.9) is bounded. An even stronger 
result holds : 

r2("fl,,11 - PU+ -+ 0- (5.10) 

To prove (5.10), we note that, where r+m, ( 4 . l k )  holds and we may linearize 
the equations around the hydrostatic solution. Since u -+ 0 where r is large, we 
may assume that the linearization of the stress response is a Newtonian response. 
This linearization is used in what follows to show that [[av/ar]] = [[X,@]]/,u and 
wv +re o(l/r2). Under linearization, (5 .3b ) ,  ( 5 . 3 d ) ,  (5.3f) and conditions specified 
for - z + 00 under (4.1 k) may be written respectively as 

(5.11 a) 

(5.1 I b )  

(5.11 c) 

h' [[$]I = const.- on z = h + ~ ,  
r2 
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lim v(r ,z)  = E(r) = a2Q/r. and, for all r B a, 

Equation (5.11d) may be expressed as 

lim [[v]] = 0. 
- S-+W 

Equations (5.11 a-c) now imply that, on the free surface, 

491 

(5.1 1 d )  

It is now easy to see, by linearizing (4 . lb) ,  that u = o ( l / r )  and uv = o( l / r2) ,  
proving (5.10). 

Equations (5.9) and (5.10) imply that 

[Xr8(a, x ;  Q )  - &@(a; Q)] dz + h(a; a) &;s(a; Q )  = 0. 

Moreover, 
h(a; 0) 0 

flrje(a; c2)dz-J 8,;e(a; Q)dz. 
J - m  - m  

h(a; Q) grje(a; a)  = 

Hence, 
h(a; Q.) 0 

~ , ~ ( a ,  z ;  a) dz = S drs(a; Q )  or T ~ ( Q , G )  = !P~(Q,vJ, 
J - m  --m 

proving (5.6). 
The physical meaning of the torque theorem can best be expressed by com- 

paring the torques over the region - Z(e) c z < h, where the flow under the free 
surface is perceptibly different from viscometric Couette flow. Assuming (5.7) 
or (5 .8) ,  there is I(€) > 0 such that for any E > 0 

(5.12) 

This expression implies that the torque per unit length TQ(Q,vn)/(Z+h) in a 
climbing flow (STP) is smaller, and in a sinking flow is larger, than the torque 
per unit length !PQ(Q,%)/Z on the same rod rotating in a viscometric flow. For a 

Newtonian fluid, !P@(Q,%)/Z = -4nupa 

is independent of 1. The estimate (5.12) gives more information when the region 
( I ( € )  for small E ) ,  over which the flow is disturbed, is not too large. 

It remains finally to derive the depth-averaged equations (5.5a-c). The deri- 
vation uses the following identities. If g(r, z )  is any smooth integrable function, 
then 

(3,s) = S”“’ a,gdz = - gdz - h’(r) g(r, h )  
--m dr S” --m 

If v = e,u + e,w is any smooth integrable field satisfying (4.1 f ), then 

= (rug}’ + rg(w - h’u) = (r (ug))‘. (5.14) 
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It follows from (5 .14)  that 

G .  X. Beavers and D.  D .  Joseph 

(uv + V,. rvv} = (uv) + ( ~ ( u v ) ) '  = ( l / r )  (r2(uv))'. 

Applying (5 .13)  and (5 .14)  to ( 5 . 3 a ) ,  we get 

(r"X,rll)'-("~,,ll) -r("@ll)'-rh"[8.r- @llIz=,+r~rzIz=h 

= Ar(u2))' -P("V211) 

Applying (5 .13)  and (5 .15 )  to ( 5 . 3 b ) ,  we get 

1 
- r (r2"flr,ll)' - r[h'"Xr,lI -&,I = ; (r2<uv))'. 

Applying (5.13) and (5 .14 )  to ( 5 . 3 ~ ) ~  we get 

(rfJrz>' - r[h'& - (&, - " @ I ] ) ]  Iz=h = p(.wu>'. 

(5.15) 

(5.16 a)  

(5.16 b )  

(5.16 c) 

To obtain ( 5 . 5 a ) ,  we combine ( 5 . 1 6 a ) ,  (5 .3e)  and ( 5 . 3 f ) .  To obtain ( 5 . 5 b ) ,  we 
combine (5 .16b)  and ( 5 . 3 d ) .  To obtain (5.5c), we combine ( 5 . 1 6 ~ )  and (5.3f). 
This completes the derivation of the depth-averaged equations (5.5a-c).  

6. The method of slopes and the method of profile fitting 
The perturbation theory of the rotating rod viscometer may possibly be used 

to determine the Rivlin-Ericksen parameters up to order four. We are now 
going to establish the utility of the theory up to order two; the higher-order 
theory will be discussed briefly in 5 8. 

We use the second-order theory to determine the values of the constant /? 
from (6.1) below: 

(6.1) 

When h, T and p are given, we may compute /?from (6.1). In figures 9 , 1 2 ,  18 and 
22,  we have plotted typical examples of the height rise at r = a against the square 
of the angular velocity w2 = Q2/4n2. As was true of the Joseph et al. (1973) 
experiments, the rise is nearly linear in w2 for values of u2 less than about 10. 
This suggests that there might be good agreement between the second-order 
theory given by (6.1) and the experimental observations. Such agreement was 
attained in Joseph et al. (1973) ,  even though in those experiments the condition 
h'(a) = 0 was not satisfied; neither was h'(a) small. Joseph et al. (1973)  attributed 
the rise associated with the non-zero wetting angle h'l,=, = -e  to capillarity. 
We replaced (6.1) with 

h(r; Q2,1$,p,T,e) = h,(r ;p ,T ,e)+h(2) (r ; /?76 , ,T)  Q2+0(Q2e+f4 ) .  

h(r; Q2,p,tp, T )  = h(2)(r;/?,p, T) Q2+O(Q4).f 

(6 .2)  

t It is best to regard h(2) as the slope of the rise curve a t  the origin of the CP, h plane. 
The existence of a substantial interval of o2 ( = R2/47r2) over which the rise is linear is 
an  accident which requires that the remainder in (6.1) be small relative to hWR2 (see 
Joseph et al. 1973, p. 385, footnote). 
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--I-- -- - --- r--- 1 = 

w: 0: 0 2  I' 

FIGURE 2.  (a )  Method of slopes. ( b )  Method of profile fitting. - - -, second-order theory; 
-, experiment. Observed rise a t  r = a never seems to lie above second-order theory. 
Static rise in height h, computed using observed contact angles. When the fluid does not 
wet the rod, h, = 0 and h'(a) = 0. I n  second-order theory p is computed from (6.5) by 
method of slopes. Theoretical profiles computed numerically from first two terms of 
(6.2) using observed values of h'(o), and values of [ taken from method of slopes. 

hs is the static rise, computed from 

-pgh, = 0,  h'l,=, = -6, - hs+O as r+w. ( 6 . 3 )  

The static rise vanishes when e = 0. The plausible procedure (6.2) for computing 
h seemed to work, but had an ad hoc character, since e was not small and there 
was no a priori reason to neglect terms O( CPe). In  the new experiments reported 
here, we have been able to control e, setting it to aero. 

There are two methods we use to determine p from (6.2) and the measured 
values of h = hex,: the method of slopes and the method of profile fitting. The 
two methods are demonstrated in figure 2 .  To use the method of slopes, we need 
only measure the height rise hex, a t  r = a ;  from these measurements, we read 
off a slope and equate the theoretical and measured values 

h(')(";D,p, T )  = dhexp/dCl2. (6.4) 

This equation is then solved for p. The method of slopes does not depend on the 
static climb h,, but the only justification we have for assuming that dh,,,/dCl2 
is independent of e is experimental. 

that gives the best 
fit over the entire profile. This method is judged successful if, a t  a given tem- 
perature, one and the same value of j? is determined for a single fluid from tests 
with rods of different radius rotating a t  different values of Q. The method of 
profile fitting requires that one compute the static rise hs from the experimentally 
measured values of 8. The method of profile fitting is more accurate but more 
time-consuming than the method of slopes. In  general, the determination of D 
is achieved most efficiently and accurately by simultaneous use of both methods. 

In  using these two methods, we have noticed that the experimentally measured 
rise curves never lie above the rise curve predicted from the second-order theory. 

In  the method of profile fitting, we choose the value of 
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The observed curves must, by construction, coincide in value and slope with the 
theoretical curve when Q = 0.t The second-order curve is a straight line of 
slope 

where h2 = a2X and S = pg/T.  The observed curve has a one-signed curvature; 
it  bends down and away from the straight line. It follows that the theoretically 
computed profiles lie above (never below) the observed ones when r is near to a. 
The discrepancy between the computed and measured values of the rise at  
T = a must tend to zero monotonically with Q. 

7. Experimental equipment 
The essential part of the viscometer is a circular rod, which is free to rotate 

about a vertical axis in a large vat of fluid. The principal components of the 
viscometer, as shown in figure 3 (plate 2), include a drive motor, an accurately 
machined circular rod, and a large container of liquid. The viscometer is mounted 
on a heavy steel table to minimize external disturbances. During operation of the 
viscometer, the part of the apparatus shown in figure 3 is enclosed in a glass- 
fronted cabinet, within which the temperature can be maintained within 
-t 0.25 “C of any pre-selected value between about 25 and 50 “C. A recirculating 
forced-air heating system is used to accomplish this. The liquid temperature is 
monitored by means of a thermocouple located in the liquid, and the output is 
amplified and continuously dispIayed on a chart recorder. 

The drive motor for the rods is a d.c. servo-motor$ with a feed-back control 
system, which limits fluctuations in speed to less than 3 yo under variable torque 
conditions. The operating speed range of the motor istapproximately from 0.1 
to 100 rev s-l. The motor is mounted on a dove-tail slide, so that the rod is 
driven from above. The slide is attached to a steel support, which in turn is 
rigidly fastened to the steel table. This arrangement allows the initial insertion 
of the rod into the fluid to be made in a vertical direction. 

Seven different aluminium rods were used in the experiments described in 
this paper. The radii of the rods are 0.079, 0-159, 0.317, 0.476, 0.635, 0.794 and 
0.953 cm. With the exception of the smallest rod, each was carefully machined 
to ensure roundness along its full length, after which it was polished. The smallest 
rod was made from polished aluminium drill-rod. The upper end of each rod 
contains a tapered hole which fits a corresponding taper on the motor drive 
shaft. In  this way, a rod can be attached concentrically to the motor drive 
shaft by means of a simple push fit. In addition, there is a small conical hole in 
the centre of the bottom of each rod, and this hole accepts the point of a spring- 
loaded cone bearing situated in the bottom of the fluid container. This method 
of aligning the rod proved to be very effective. For example, the largest rod 

t By measuring the contact angle, we can accurately compute the height rise when 
is selected so that the theoretical end measured rise l’l = 0. The climbing constant 

curves have the same slope when l’l = 0. 
1 Electrocraft Motomatic Type E-550. 
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showed less than 0.001 3 cm eccentricity a t  any point along the rod when measured 
with a dial indicator. 

The circular container for the fluid had a depth of 7.7 cm and a diameter of 
30.5 cm, thus giving radius ratios of 16: 1 and greater, so that the rod was 
effectively rotating in an infinite body of fluid. The container was accurately 
positioned on the table top by means of locating bars which allow the cone 
bearing in the bottom of the container to be aligned directly beneath the centre 
of the motor drive shaft. 

Measurement of the rotational speed of the rod was accomplished by means 
of a small mirror attached to the motor drive shaft, a light source and photo- 
multiplier tube, and a digital counter. This system was capable of measuring 
the rotational speed to within 5 0.05 rev s-l. 

Measurements of the shape of the free surface were made photographically 
using a two-camera technique. The cameras were mounted in front of the 
apparatus on a sliding horizontal track, so that their positions could be inter- 
changed very rapidly. One camera was used to obtain a Polaroid slide of the 
shape of the free surface, and the other was used to obtain a positive-negative 
Polaroid print of the same shape. Both cameras were set to photograph at 
grazing incidence along the surface of the undisturbed liquid, which completely 
filled the liquid container. The Polaroid slides were later projected and quanti- 
tative measurements of the shape of the free surface were obtained from the 
enlarged images, using the known rod radius to establish the scaling factor. The 
Polaroid negatives were used to produce enlarged free-surface profiles, for 
comparison with theory in the method of profile fitting. Measurements made 
from these profiles also served as a check on the corresponding measurements 
from the slides. A further check on the height of clim”b of the liquid at the rod 
surface was provided by means of a direct reading using a cathetometer. The 
cathetometer was capable of discriminating to 0.005 cm, and the agreement 
between the scaled measurements and the cathetometer results indicated that 
the two methods have about the same accuracy. 

When using the photographs and slides, it  was necessary to be able to locate 
accurately the position of the free surface of the undisturbed liquid. This was 
accomplished by means of the two metal pointers shown on each side of the rod 
in figure 3. The pointers were positioned in a diametral plane normal to the 
direction from the camera to the rod. The vertical position of the pointers was 
carefully adjusted, so that the tips were as close to the surface of the liquid as 
possible, without actually touching it. In  this way, the pointers and their 
reflexions in the surface of the liquid enabled the free surface in the plane of the 
pointers to be located. 

It was important that the climbing data be obtained at successively greater 
values of the angular velocity, so that the height of climb at  the rod surface 
never decreased. This avoided prior wetting of the rod surface by the liquid. 
The contact angle at the rod was hard to measure if the liquid was climbing on 
a rod which was coated with a thin film of the liquid. 
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8. Experiments with STP 
Joseph et al. (1973) achieved good agreement between the theory of rod 

climbing and experiments with STP. But there were small discrepancies in the 
values of that were of unclear origin. In  addition, the method used to compute 
the static rise was, to a degree, ad hoc, and not perfectly matched to the basic 
theory. Our new experiments with STP were designed to clarify these two re- 
maining areas of vagueness. 

8.1. Characterization of STP 
STP is a commercial motor oil additive. One of the effects of adding STP to 
motor oil is to increase the effective viscosity of the oil, and for this reason it is 
sometimes referred to as a viscosity index improver. It consists of a solution of 
polyisobutylene in a petroleum oil. We identified the polymer in a sample of the 
STP used for these experiments by first employing standard techniques to pre- 
cipitate the polymer using methanol, then comparing an infra-red spectrograph 
of the precipitate with a standard spectrograph for polyisobutylene. All the 
STP used in these experiments came from the same production batch, for which 
the polymer content was 26.6 yo by weight of the h a 1  product. 

The density of the STP was measured as 0.89 g (3111-3 at 20 "C, and was found 
to change by less than 1 % over a temperature range of 20-50 "C. The surface 
tension was measured using a standard ring tensiometer, and found to be 
30.9 dynes cm-l. The surface tension appeared not to vary with temperature over 
the range 20 "C to 50 "C. The normal and shear stresses were obtained as func- 
tions of the shear rate, using a rheometrics mechanical spectrometer. The shear 
stress and first normal stress difference are shown as functions of the shear rate 
in figure 4. From the former, it  appears that STP has% nearly Newtonian shear 
viscosity. This is supported by the plot of shear viscosity as a function of shear 
rate shown in figure 5, which shows that the viscosity is virtually independent 
of shear rate at low rates of shear. 

Two sets of data points are shown in figures 4 and 5. The sol5d points represent 
the results of tests with the cone and plate in a clean state, whereas the open 
points represent the results of tests of the same fluid a t  the same rates of shear 
using the cone and plate coated with Scotchgard. These results show that the 
Scotchgard has no apparent influence on the properties of the STP near the 
coated surfaces. 

8.2. The climbing of XTP 
We turn now to a qualitative description of the sequence of changes in the free 
surface of the fluid near the rod as the speed of the rod is increased from zero. 
This sequbnce is depicted in figure 6 (plate 3), which shows a rod of 0.317 em 
radius without the Scotchgard surface coating. When the rod is a t  rest, the climb 
is due entirely to  wetting a t  the surface. As the rotational speed is increased to 
about 3 rev s-l, the liquid climbs the rod. The initially concave shape of the 
free surface of the climbing fluid gradually assumes a slightly convex form. 
It is in this speed range (0 to about 3 rev s-1) that the second-order theory is in 
good agreement with experimental results. As the speed is increased further, 
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FIG~RE 5. Shear viscosity of STP as a function of shear rate: 0, cone and plate coated 
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the free surface becomes more convex as secondary motions within the climbing 
fluid become important. The final stable configuration assumed by the drop of 
climbing fluid before instability is shown in photograph (h) of figure 6. The fluid 
appears to meet the main body of fluid a t  a point of discontinuity of slope; close 
inspection reveals a smooth but very rapid variation. 

At larger values of the rotational speed the steady droplike configuration loses 
its stability to a time-periodic motion which first appears with only infinitesimal 
amplitude. The time-periodic motion is a bifurcating flow whose amplitude 
increases with speed. In  the time-periodic motion, a band of fluid appears to rise 
slowly almost to the full height to which the fluid climbs up the rod, then to 
collapse downwards to the main body of fluid. The periodic motion is very regular, 
and increases in frequency as the rotational speed is increased. Figure 7 (plate 4) 
shows the motion for one complete cycle for a rod rotating at 13-3revs-l; 
the frequency of the periodic motion is 0.4 cycles s-1. Finally, when the rota- 
tional speed is increased further, the free surface ruptures, and globules of 
fluid are thrown away from the oscillating drop. 

8.3. Experiments at room temperature when the XTP wets the rod 

In  these experiments we rotated each of seven available rods in STP a t  room 
temperature (about 26 "C). The rods were not coated with Scotchgard, and 
there was always a rise due to wetting, with wetti?g angles of about 45'. The 
plots of h(a; w2) against 02 are similar to those of Joseph et al. (1973), and to the 
samples given in figure 8. This figure shows height-rise graphs for the same rod 
at three different temperatures. It is clear that the height of climb at  the rod is 
greatly influenced by the temperature of the fluid (see $8.5). The three plots, 
however, exhibit the same general features. The height-rise curve h(a; w2) is 
linear when w is small, is convex a t  all w ,  and reackes a nearly constant value 
before instability. 

Experimental values of h(a; w2)  at small o2 for each of the seven rods are shown 
in figure 9. The height of climb at each rod appears to be linear in o2 for values 
of w2 less than about 12. The slopes of the linear regions were found using a 
least-squares fit, and the associated values of bare listed in table 1. These results, 
all obtained a t  approximately the same temperature, show very little scatter. 
At a given temperature, there is no dependence of b upon the rod radius. 

The method of profile fitting was used to check the values of p found by the 
method of slopes. Predicted and measured profiles were compared at  four different 
rotational speeds between about 1 rev s-l and 3 rev s-1 for each of the rods. 
The compakisons for six of the rods are given in figure 10. The second-order 
theory gives accurate predictions of the free-surface shape when the value of 
p is determined by the method of slopes. For these experiments, in which the 
linear portion of the height-rise curve is well defined, the method of slopes can 
be used to determine an accurate value for b, from which we can predict accu- 
rately the shape of the free surface. For fluids that have a smaller range of w2 
in which second-order theory holds (like polyacrylamide), the determination of 
/? is most accurately accomplished by means of the method of profile fitting 
(see $9). 
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Rod radius (cm) 

0.079 
0.159 
0.317 
0-476 
0.635 
0.794 
0-953 

Temperature ("C) 
25.9 
26.0 
26.8 
25-7 
27.9 
25.8 
25.8 

P (g cm-l) 
0.96 
1.02 
0.97 
0.93 
0.86 
0.95 
1.00 

TABLE 1. Values of /? for STP near room temperature. 
In these experiments the rod was not coated and the STP wet the rod 

8.4. Experiments at room temperature when the rods are coated with Scotchgard 

When the free surface of the fluid does not make perpendicular contact with the 
rod it is necessary to specify the slope of the fluid surface a t  the rod, to compute 
profiles for the method of profile fitting. The theory assumes perpendicular 
contact at the rod. When the contact is not perpendicular, a static rise is added 
to that computed from theory. The static rise is computed from the surface-ten- 
sion equation with the value of the prescribed contact angle taken from the 
experimental profiles. The computed climb due to wetting is quite sensitive to 
the value of the contact angle, which must therefore be measured accurately 
from the experimental profiles. By coating the rods with Scotchgard, we were 
able to achieve a zero slope at the rod surface. This eliminates the need for a 
correction for the static rise, and matches perfectly in the experiments the 
conditions assumed in the analysis. 

The flatness of the contact between the STP and the rod is apparent in the 
photographs of figure 11 (plate 5). When the rod is"stationary (figure 11 (a) )  no 
static climb is observed. As the rotational speed is increased, the STP climbs up 
the rod, maintaining a flat contactwith the rod.The surface profiles are somewhat 
similar to those shown in figure 6, except very close to the rod, where the wetting 
has a strong influence on the profile. The apparent wavelike shape that appears 
in the profiles of figure 11 for the higher velocities is an optical effect, which 
arises from the lighting arrangement. The top of the STP drop is flat and smooth; 
light reflected from the upper part of the rod on to the surface of the drop gives 
the impression that the liquid surface has a wavelike character. 

Surface profiles were measured on STP for three rods coated with Scotchgard, 
using the photographic techniques. In  addition, a cathetometer was used to 
check the rise a t  the rod. The quantity h(a; 02) is plotted as a function of w2 for 
each rqd in figure 12. The values of Pfound from the slopes of the linear portions 
of the curves obtained from the experiments with coated and uncoated rods 
were consistent with one another. The two sets of results are compared in figure 
15. The free-surface profiles computed from (4.16) are in excellent agreement 
with the measured profiles for the coated rods (figure 13) for rotational speeds 
up to about 3 rev s-l. 

The two plots in the upper part of figure 12 show the results of a test carried 
out to  substantiate the earlier finding that the Scotchgard had no effect on the 
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(a)  (6 )  (4 (4 (4 (f) 
a (cm) 0.159 0.317 0.476 0.635 0.794 0.953 
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wz (rev s - . ~ ) ~  

FIGURE 12. Experimental values of h(a; w 2 )  at small w2, for rods coated and uncoated with 
Scotohgard, in STP at room temperature. 

Uncoated Coated 
w 

cl 0 0 9 
a; (cm) 0.635 0.635 0.476 0.317 

STP near the rod. We first rotated a clean rod (radius 0.635 cm) in STP, then 
we coated the rod with Scotchgard and rotated it again. The slopes of the plots 
of h(a; w2) against w2 are identical; the difference in the actual rise is constant 
and equal to the static rise. 

8.5. The effects of varying the temperature 

The discrepancies in the values reported for /? in Joseph et d. (1973) suggested 
that small changes in temperature may cause appreciable changes in the value 
of /?. The results presented here allow us to make this conjecture precise. 

The influence of temperature on the climb of STP is emphatically demonstrated 
in the photographs of figure 14 (plate 6). These show the same rod (radius 0.476 cm) 
rotating a t  the same speed (5 rev s-l) in the same batch of STP, the only difference 
being in the temperature of the fluid, which is 46-1,25.6 and 5.0 "C in (a),  (b)  and 
(c ) ,  respectively. The differences in the rise are dramatic: the rise at the rod at  
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FIGURE 13. Profile fitting for STP at room temperature. Comparison of observed with 
predicted profiles, for three rods coated with Scotchgard. Comparisons identified by rod 
speed (rev s-l). 
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a (cm) 0.635 0.476 0.317 

5.0 "C is almost ten times the value a t  46.1 "C. There are correspondingly large 
differences in the values of p. The approximate solution (4.19) to (4.16) for the 
climb a t  second order shows that, for a given radius and rotational speed, the 
climb at the rod increases linearly with ,!?. Thus, the photographs of figure 14 
indicate that, as the temperature is increased, a large decrease is to be expected 
in the value of /?. 

Quantitative measurements of j? were made at  temperatures in the range 
from about 25 to 50 "C, using uncoated rods. The variation of ,!?with temperature 
is shown in figure 15. It is evident that B depends strongly on the temperature; 
it  changes by a factor of ten over the range of temperatures covered in figure 15. 
By curve fitting, we find that 

/? = 20exp ( - 0.115T) g cm-1, 25 "C < T < 50 "C. (8.1) 

Equation tS.1) is probably the only known empirical formula giving the tem- 
perature dependence of a Rivlin-Ericksen constant, other than the viscosity. 
It shows how important it is to control the temperature in experiments to 
determine the values of the Rivlin-Ericksen constants. Insufficient attention 
was paid to temperature in the Joseph et al. (1973) experiments; daily tempera- 
ture variations of over 2 "C in the laboratory are more than sufficient to produce 
a 20 % discrepancy in I$. 
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The effect of increasing rotational speed on the free surface at a temperature 
of 46.1 "C is shown in the sequence of photographs of figure 16 (plate 7). The 
rise of the fluid at 46-1 "C (rod radius 0.476 em) is stable a t  much higher rota- 
tional speeds than at  25 "C (compare figures 16 and 6). As the rotational speed 
is increased to very high values, the rise decreases, and is eventually replaced 
with an inertia-dominated depression of the free surface (figure 16(h)). The 
depression of the free surface a t  high speeds may be caused by viscous heating 
due to the high rates of shear near the rod. 

It is interesting t o  note that we were able completely to eliminate the climb 
on this rod a t  all rotational speeds, by raising the fluid temperature to 56 "C. 
At this temperature, the free surface of the fluid sinks, as it does for the New- 
tonian oil in figure 1. These observations are consistent with the notion of a 
critical radius (equation (4.17)). The critical radius, based on the value given by 
(8.1) a t  56 "C, is about 0.38 em; the rod radius is 0.476 em, and the fluid cannot 
climb. 

FIG~RE 5. Shear viscosity of STP as a function of shear rate: 0, cone and plate coated 
with Scotchgard; 
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w4 (rev s-l)* 
F I G ~ ~ E  17. Residual h" as a function of w4 for uncoated rods, rotating in STP at room 
temperature. 

(4 (b )  (4 (4 (e) Cf) 
a (om) 0.953 0.794 0.635 0.476 0.317 0.159 

8.6. Rod climbing at higher orders 

The experiments described in Joseph et al. (1973) and here are compared with 
the second-order theory. Both sets of experiments show that the range of 
rotational speeds for which the second-order theory holds is in the interval 
of o from 0 to about 3 rev s-l. To investigate rod climbing at higher orders, we 
adopted the following procedure : we computed /? from the second-order theory, 
then we defined a residual f l  as 

- K = h(a; 0 2 ) ~ ~ ~  - h, - h(2)4n2~2, 

where M 2 )  is given by (4.19). The residual gives the remainder of the height rise 
after terms O ( 0 2 ) ;  given a series representation in powers of w2, the residual is 
O(04). In  figure 17 we have plotted the residual as a function of 0 4  for the experi- 
ments from which figure 9 was prepared. The residual for each rod is linear over 
a substantial portion of the rise curve (up to about 6 rev s-l). This suggests that 
STP, in this speed range, may be fairly well modelled by a fluid of grade four. 
We are going to investigate this interesting possibility in the course of our 
planned efforts to obtain the values of the Rivlin-Ericksen constants up to  
order four from the rotating rod viscometer. 

9. Experiments with polyacrylamide 
The results, presented in Joseph et aZ. (1973) and $8, leave open the possibility 

that the second-order theory of Joseph & Fosdick (1973) and Joseph et al. (1973) 
can be applied only to STP. To test the second-order theory with a second 
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common fluid, we performed a series of experiments using a solution of poly- 
acrylamide powder in a glycerine-water mixture. This fluid was chosen because 
it is known that the dependence of the shear viscosity on the shear rate is quite 
different from that of STP (polyacrylamide possesses pseudoplastic character- 
istics). 

A solution containing 1.48 yo by weight of polyacrylamide powder was manu- 
factured as follows: 6.492 kg glycerine, 6-492 kg distilled water, 0.195 kg poly- 
acrylamide p0wder.t The glycerine and water were thoroughly mixed, then the 
powder was added very slowly by passing it through a flour sifter into the vortex 
formed by a rotating stirrer. The powder was added to the solution over a period 
of several hours, after which the solution was allowed to sit for several days. 

A specific gravity bottle was used to determine the density as 1.21 g ~ m - ~  
at 24-1 "C. The surface tension of the fluid was measured using a standard ring 
tensiometer. The response of the polyacrylamide surface to the ring tensiometer 
is viscoelastic and is not like STP. Classical surface tension seems inadequate 
to explain surface behaviour at an air-polyacrylamide surface. Our measure- 
ments of surface tension were made several times over time intervals of several 
minutes each, and the resulting value for the surface tension was found to be 
58 dynes cm-l. These values for the density and surface tension were used in 
the numerical computations for both the method of slopes and the method of 
profile fitting. 

9.1. Experiments at room temperature 

I n  all these experiments, the static climb was eliminated by coating the rods 
with Scotchgard. The first experiments were performed at room temperature a 
few days after the fluid had been mixed. Four different rods (a  = 0.317, 0.476, 
0.635 and 0.794 cm) were used in the viscometer. The prbcedure was the same 
as that used for the STP; the measurements (both from the slides and with the 
cathetometer) were a little more difficult, because polyacrylamide is optically 
transparent. 

The plots of the height of climb a t  the rod as functions of o2 are shown in figure 
18 for the four rods. Comparison with figure 9 shows that the apparent region of 
linearity is less for the polyacrylamide solution than for STP. Thus, to obtain 
the best possible values for /? from the data, it was decided to use profile fitting, 
and seek values for /?that would match experimental and calculated profiles a t  
the lowest angular velocities for which distinct profiles could be measured. The 
values of obtained in this way were then used to compare profiles a t  other 
angular velocities up to about 3.5 rev s--1 for each rod. The values obtained for 
/? are given in table 2, and the corresponding profile comparisons are shown in 
figure 19. In  addition, the values of /? were used to compute the slope 

dh(a; 02)/do2 

for each rod, and these are the lines shown in figure 18. They are good represen- 
tations of the data for values of w2 less than about six. 

7 Type Cyanamer P-250, manufactured by the American Cyanamid Company. 
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FIGURE 18. Experimental values of h(a; 0 2 )  at  small w2 for rods coated with Scotchgard, 
rotating in polyacrylamide solution at  approximately 24 "C (see table 2). Slopes of lines 
are determined using values of obtained by the method of profile fitting (figure 19). 

(a)  (bf fc) (4 
a (cm) 0.317 0.476 0.635 0.794 

9.2. The effects of varying the temperature 

Following the procedure used for STP, an attempt was made to investigate the 
influence of temperature on the value of ,8. Unfortunately it was not possible 
to obtain a graph showing the dependence of ,8 upon temperature, owing to the 
unexpected behaviour of the fluid at temperatures above room temperature. 
These effects will be summarized below. 

When the speed of rotation of the rod was increased at room temperature, the 
shape of the free surface was similar to those shown in figure 11. The rise did not 
increase much with the angular velocity at large values of the angular velocity; 
it  appeared rapidly to approach a constant maximum value, but before this 
value was attained the steady configuration was destroyed by instabilities. 
The critical speed for instability is much higher in polyacrylamide than in STP, 
and the time-periodic flow itself is very unstable in polyacrylamide. 

Th6 behaviour of polyacrylamide at high temperatures is unlike polyacryl- 
amide at room temperature or STP at any temperature in the range 25 < T < 50 "C. 
This difference is made clear in figure 20 (plate 8). The figure shows a rod of 
radius 0.476 em rotating in the polyacrylamide solution at  a temperature of 
38.3 "C, for angular velocities between 1 and 70-0 rev s-l. At 1-0 rev s-1 the 
free surface is already beginning to assume the bell-shaped profile distinctive of 
profiles for which the second-order theory is not adequate to describe the motion. 
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FIGURE 19. Profile fitting for polyacrylamide solution. Comparison of observed with 
predicted profiles for lowest rotational speeds of figure 18. 

(4 (6)  (4 (4 
a (om) 0.317 0.476 0.635 0.794 

At 2.5 rev s-l (figure 20 ( 6 ) )  and 6.5 rev s-1 (figure 20 (c ) ) ,  the bell-shaped profile 
continues to grow, reaching a maximum height eventually a t  about 25 rev s-l 
(figure 20 (a )). As the speed is further increased, the fluid tends to spread radially 
and the height of climb at the rod starts to decrease, as shown in figure 2O(e) 
a t  45 rev s-l. This trend continues up to about 70 rev s-1 (figure 2 O ( f ) ) ,  at 
which speed the drop of climbing fluid broke up. 

The absence of any measurable linear region on a plot of h(a; d) against w2 
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Rod radius (cm) Temperature ("C) B ( g  0m-l) 

0.317 24.4 0.78 
0.476 33.9 0.76 
0.635 24.2 0.84 
0.794 24.4 0.84 

TABLE 2. Values of the climbing constant for a fresh solution of 
polyacrylamide (1.48%) in glycerine and water 
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FIUURE 21. Experimental values of h(a; 02) for rods coated with Scotchgard, rotating in 
polyacrylamide. No measurable linear region. Observed profile shapes for lowest rota- 
tional speeds are similar to profile shapes a t  much higher speeds when temperature is 
lower. 

a (em) Temperature ("C) 
(a) 0.476 38.3 
(b )  0.635 33.1 

at higher temperatures is clearly shown in figure 21, which presents data for the 
0-476 em radius rod at 38.3 "C and the 0.635 em radius rod at  a temperature of 
33.1 "C. Also shown in this figure are sketches made from enIarged tracings of 
the actual profiles for the three lowest angular velocities a t  which a clear profile 
could be discerned. The profiles have shapes very similar to the profiIe shapes 
obtained at much higher angular velocities when the temperature is lower. 
No value of /? could be determined by either the method of slopes or the method 
of profile fitting. This determination will require consideration of terms arising 
in the higher-order theory. 

After the experiments a t  38.3 and 33-1 "C, the liquid was allowed to cool to 
room temperature (24.4 "C), and another experimental run was made using the 
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FIGURE 22. Experimental values of h(a; w2)  at small w2 for one rod (radius a = 0.476 cm) 
coated with Scotchgard, rotating in polyacrylamide, after heating and subsequent cooling 
of the fluid. 

(a) (4 (a) 
Temperature ("C) 24.4 24.4 27-2 

0.476 em rod. In  this instance, there was a definite linear region for o2 < 10 
(figure 22 (a)), and the method of slopes and method of profile fitting could both 
be used to obtain the value /? = 1.4 g em-1, a value considerably greater than 
that obtained earlier at the same temperature. Further heating and cooling 
produced similar effects, so that it would appear that the initial heating of the 
fluid changed it in some way. 

A complete description of the experiments with the polyacrylamide solution 
is given, with the experiments listed in chronological order. (i) Soon after the 
liquid was mixed, experiments at room temperature were performed with four 
different rods. The resulting values of ,8 are given in table 2. (ii) The liquid was 
allowed to stand in a covered container for one week, then the 0.476 em rod was 
used. /? was found to be 0.74g cm-1 at 22.8 "C. (iii) The liquid was heated to 
38.3 "C. No value of /?could be found, because of the apparent lack of a measurable 
range of o in which second-order theory is adequate (figure 21). (iv) The liquid 
was cooled to 33.1 "C. Again, no value of /? could be found (figure 21). (v) The 
liquid was cooled to 24+4"C, and ,8 was obtained as 1-40gcm-l (figure 22(a)). 
(vi) The liquid was left in a covered container for two weeks, then the experiment 
a t  24.4 "C was repeated. The value for j? was found to be 1-6 g cm-l. (vii) The 
liquid was heated to 35.6 "C. No value of /? could be found. (viii) The liquid was 
then cooled to 24.4 "C, and again the method of slopes and the method of profile 
fitting could be applied, giving a value for ,8of 1-36g em-l (figure 22 ( b ) ) .  (ix) The 
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liquid was next heated to 27.2 "C; and it was again possible to determine a value 
for B (B = 1-26 g cm-l: figure 22 (c)). 

From these experiments, i t  is concluded that the second-order theory can be 
used for polyacrylamide solutions of the type used in this project, provided the 
temperature is such that there is a discernible range of rod speeds for which 
h(a;w2) is linearly proportional to 02. For the solution used in these experi- 
ments, this linear region existed when the temperature of the fluid was less than 
about 28 "C. The large difference in the values obtained for /? before and after 
heating is caused by permanent heat-induced changes in the polyacrylamide. 

We gratefully acknowledge the assistance of C. G. Trowbridge in all aspects 
of the experimental programme. Our work was supported in part under grants 
GK-37675 and GK-12500 from the National Science Foundation. 
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FIGURE 3. Apparatus. 

Plute 2 



Journal of Fluid Mechanics, Vol. 69, part :3 Plate 3 



Journal qf Fluid Xechnnics,  Vol.  69, part 3 Plate 4 

((.) (f) 
FIGURE 7. Time-periodic motiori of the  drop of climbing STP. Rod radius, 0.635 cin; 

rotatioriel spccd, 13.3 rov s-1; frcyi i (~ i icy  of p(~riodic inotioii, 0.4 cyclcs 5 - l .  
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